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Abstract. Elastic differential cross-sections are measured over a broad range of energy values and the
results are compared with quantum calculations for the same process. The agreement between measured
and computed data turns out to be fairly good and calculations further allow the separation of the cis and
trans conformer behavior and to compare it with the angular distributions for scattering from the dimer
at the same energies.

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules – 34.80.-i Electron scattering

1 Introduction

The formic acid (HCOOH) molecule represents one of
the simplest organic molecules which is expected to play
a role in the interstellar formation of more complicated
biomolecules [1]. Its dimer species, also a prototype for the
carboxylic acid dimers, is one of the most stable neutral
complexes and is known to form a ground state configu-
ration of a cyclic, eight-membered ring that encompasses
two strong hydrogen bonds [2,3]. The many studies on
such systems have also led to the suggestion that both of
them could be considered as key compounds in the forma-
tion of small biomolecules which can in turn provide the
building blocks of larger biologically significant molecules
in the early universe [4].

One further line of interest on this important molecule
comes from the recent increase in the experiments that
have established rather clearly how low-energy electrons
are one of the main secondary products in biomaterials
when irradiated by either energetic particles or by pho-
tons [5,6]. Such electrons are further capable of fragment-
ing the target biomolecules and become the chief initiators
of the permanent damage effects, which are thus suggested
to occur through the formation of highly reactive radicals
and ions within the supporting medium [7].

The formic acid gaseous molecule has therefore been
analyzed in terms of its behavior under impact of low-
energy electrons [8] and the general interpretation of the
observed resonances has been provided by our recent theo-
retical work [9]. The dimer species has also been observed
experimentally in terms of fragmentation pattern under
dissociative electron attachment (DEA) conditions [10]
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and has further been analyzed theoretically to provide a
general attribution of the observed resonant patterns.

In the present work we carry out the analysis of exper-
imental data which have recently become available [11]
and discuss the computational and theoretical behavior
of the electron angular distributions under elastic scat-
tering conditions for the gas-phase monomer species. The
next section will therefore briefly outline the computa-
tional and theoretical treatment for the elastic (rotation-
ally summed) differential cross-sections (DCS). Section 3
will then compare the measured data with the calculations
and Section 4 will present our conclusions.

2 The computational machinery: an outline

2.1 The scattering equations

Within the Born-Oppenheimer (BO) approximation the
total wave function of a continuum electron that scatters
from an N -electron molecular target is an antisymmeter-
ized product of one-electron orbitals which parametrically
depend on the nuclear coordinates. Our present treatment
of the scattering process is limited to an analysis of the
elastic channels and no excitations will be considered for
either the bound electrons or the bound nuclei. In fact, we
will describe the scattering within the fixed-nuclei (FN)
approximation [12], which neglects any dynamics involv-
ing the nuclear motion, whereas the bound electrons will
be taken to be in the ground electronic state of the tar-
get at its optimized nuclear geometry. The initial descrip-
tion of that state will be given as a single-determinant
of near-Hartree-Fock molecular orbitals (MOs) describing
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the N -bound electrons. To obtain our scattering equations
we then expand both the bound MOs and the contin-
uum electron in a single-center expansion (SCE) around
the center of mass of the target by employing symmetry-
adapted angular functions for each of the irreducible repre-
sentations (IRs) that belong to the molecular point-group
at the chosen geometry of its nuclei. Any arbitrary three-
dimensional single-electron function is thus represented on
a spherical-polar coordinate grid centered in the body-
fixed (BF) molecular frame of reference:

F pµ(r, r̂|R) =
∑

l,h

r−1fpµ
lh (r|R)Xpµ

lh (r̂). (1)

The indices refer to the µth element of the pth IR of
the point group of the molecule at the nuclear geom-
etry R. The angular functions Xpµ

lh (r̂) are symmetry-
adapted functions given by the proper combination of
spherical harmonics Ylm(r̂):

Xpµ
lh (r̂) =

∑

m

bpµ
lmhYlm(r̂) . (2)

The coefficients bpµ
lmh are discussed in the literature [12]

and we will not discuss them here any further.
The coupled partial integro-differential scattering

equations are

[
d2

dr2
− l(l + 1)

r2
+ 2(E − εα)

]
fpµα

lh (r|R) =

2
∑

l′h′p′µ′β

∫
dr′V pµα,p′µ′β

lh,l′h′ (r, r′|R)fp′µ′β
l′h′ (r′|R), (3)

where E is the collision energy and εα the electronic eigen-
value for the target ground state so that (E − εα) = k2/2,
where k is the asymptotic momentum of the scattered elec-
tron. The (p, µ) indices, in equation (3), now label the spe-
cific µth component of the pth IR that characterizes the
continuum that belongs to the αth electronic target state
(initial state) coupled with the excited states labelled by β
with the corresponding continuum symmetry labelled by
(p′, µ′). Equation (3) contains the kernel of the integral op-
erator V , a sum of diagonal and non-diagonal terms that
in principle fully describe the electron-molecule interac-
tion during the collision. If one now further truncates the
sum on the right-hand side of equation (3) to a single
state only, one obtains the exact-static-exchange (ESE)
representation of the electron-molecule interaction for the
ground state at the geometry R.

When one restricts the summation in equation (3) to
a single state the effects of static and dynamic electron-
electron correlation are neglected. The static correlation
asymptotically produces the long-range multipolar polar-
ization of the target and is of prime importance for low-
energy electron scattering processes. We therefore include
here a modelling of the dynamical short-range correlation
through the addition of a local energy-independent poten-
tial Vcorr which we have discussed many times before [12].
The short-range potential Vcorr is then obtained from an

average dynamical correlation energy of a single electron
within the formalism of the Kohn and Sham variational
scheme (see also [13] for details). The functional deriva-
tive of such a quantity with respect to the N -electron
density provides a density functional description of the
required short-range correlation term, this being an ana-
lytic function of the target ground-state electron density.
When studying the full scattering problem, we usually cor-
rect the large r behavior of Vcorr so that it agrees with the
known static polarizability of the target molecule [9].

2.2 The angular distributions

The main quantities obtained from the asymptotic behav-
ior of the fpµ

lh (r|R) of equation (3) are the matrix elements
of the T -matrix, T pµ

ll′
(
k2|R)

which are produced in the
Body-Fixed (BF) frame of reference and are them trans-
formed to the Space-Fixed (SF) frame via a well-known
unitary transformation [13].

When one is dealing with polar molecules like
HCOOH, however, the leading term of the long-
range interactions, in the BF frame, is given by
∼(D(R)/r2)P1(cos θ) which is a very long-range interac-
tion causing the FN approximation to fail [14]. The cor-
responding divergence of the angular distributions in the
forward direction comes basically from the fact that the
above T -matrix elements go to zero very slowly so that
the sum over (l, l′) needed to obtain the DCS does not
converge and the integral cross-section diverges logarith-
mically [15]

σ(k2) ∝ 4π

3k2
D2

∞∑

l=0

(
1
l

+
1

l + 1

)
. (4)

In qualitative terms one could say that the cross-sections
could be treated as being the sum of two distinct parts,
one which includes the contributions of the smaller (l, l′)
values of the T -matrix elements, while the second one in-
cludes the further contributions from the larger (l, l′) val-
ues of the additional T -matrix elements (with Λ now col-
lectively indicating the |pµ〉 indices)

σ =
∑

Λ

l′′∑

l,l′=0

Cl,l′,Λ|T Λ
l,l′ |2 +

∑

Λ

∞∑

l,l′>l′′
Cl,l′,Λ|T Λ

l,l′ |2. (5)

The T Λ
l,l′ matrix elements are in turn related to the fpµ

l,l′

radial functions of equation (3) and these functions, for
the smaller (l, l′) values originate from the action of both
long-range part of the potential and of its short-range-
part. However, the phase accumulation that comes from
the long-range part of the potential is fairly small with
respect to the phase accumulation that comes from the
short-range part of the interaction, due to the stronger
coupling caused by the latter. Hence in practice the phase
accumulation of the smaller (l, l′) values of fΛ

l,l′(r), will
mainly be determined by the short-range part of the po-
tential acting on the incoming electron.
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On the other hand, the contributions to the cross-
section which come from large (l, l′) values will be deter-
mined by the coefficients of the larger partial waves. The
particles with these trajectories sample a much larger cen-
trifugal potential which can keep them away from the in-
ner region. In such cases, their phase accumulation effects
will be mainly caused by the long-range part of the po-
tential. For this reason, one can identify the contributions
from the larger partial waves to the cross-section with the
contribution from the same partial waves of the simpler
case in which the potential is only given by the dipole
potential for any r, i.e. for the problem of a fixed dipole
scatterer. This approximation, on the other hand is known
to give infinite cross-section [14]. It therefore follows that
the contributions from the larger partial waves in the case
of polar molecules are also diverging. However, if the rota-
tional term is not disregarded in the chosen Hamiltonian
the solutions become again well-behaved [16]. What one
can therefore do in practice is to replace the contributions
to the T -matrix for the larger (l, l′′) with the same ele-
ments calculated for the dipole rotor as the only scattering
potential.

It is worth reminding ourselves that the breakdown
of the FN approximation for polar molecules is a conse-
quence of disregarding the rotational part of the Hamilto-
nian of the problem, hence it is an artifact introduced by
the physical approximation implied by the above reduc-
tion of the total, exact Hamiltonian. Such artifacts would
still be present if we were to treat the collision in either
the BF or SF frames of reference since they are directly
related to the FN simplification.

Thus, the DCS for the scattering into a polar angle θ in
the SF frame of reference can be expressed as a Legendre
expansion [13]

dσ

dΩ
(vj → v′j′) =

∞∑

λ=0

Aλ(vj → v′j′)Pλ(cos θ). (6)

The coefficients Aλ(vj → v′j′) now depend explicitly on
the product of the elements of the transition matrix T
with some algebraic factor in a way which is reported in
detail in earlier work [16]. The Aλ(vj → v′j′) involve an
infinite sum over the angular momenta l and l′ of the T
matrix elements. The integral cross-section (ICS), involves
only the A0 coefficient while the momentum transfer cross-
section involves the A0 and A1 coefficients [16]

σ = 4πA0 (7)

σM = 4π

(
A0 − 1

3
A1

)
. (8)

If we would use the T matrix elements as obtained by solv-
ing the FN Hamiltonian, we know that the DCS would di-
verge for θ = 0 and would take oscillating values for θ �= 0
because the contributions of the long-range part of the po-
tential (given by the same expression as that for the fixed
dipole) cannot be expanded in a Legendre series [14]. If
we were to use the full Hamiltonian, on the other hand,in
order to describe the small-angle scattering we would need

Fig. 1. Computed DCS at two different energies and for
different descriptions of the low-l contributions to the cross-
sections. The expansions for each calculation are indicated as
(lmax SEP/lmax SMEP).

many Aλ coefficients in equation (6) because that expres-
sion is slowly convergent for polar molecules, and conse-
quently many T matrix elements are needed. This is due
to the fact that, for polar molecules, the T matrix elements
with large (l, l′) give the main contributions to the DCS.
For θ = 0 the solution of the dipole rotor scatterer (which
is the same as the solutions which employ a real potential
for small angle scattering) behaves as 1/(1− (1 + ε) cos θ)
and therefore the expansion of this term is slowly con-
vergent [18]. In practice, one has the difficulty that to
describe the DCS for small-angle scattering one must em-
ploy an increasingly larger number of partial waves as the
scattering angle decreases. Although it should be clear by
now where the FN approximation is failing (i.e. in the eval-
uation of the T matrix elements for large l, as the sums
over these elements cause the divergence) one would still
like to be able to extract as much information as possible
from a calculation which employs such a simple form of
the Hamiltonian. It could therefore become expedient to
replace the high l contributions with those coming from
the dipole rotor scatterer as the latter does not suffer from
the divergence. However, this could not be done simply by
replacing the FN T matrix elements with the correct ones
in equation (6), because this procedure may help to solve
the problem of the forward divergence but would not help
to solve the basic difficulty of the slow convergence as one
now would still need a very large number of T matrix ele-
ments, One possible alternative is to use instead a closure
formula

dσ

dΩ
(vj′ → v′j′) =

dσFBA

dΩ
(vj → v′j′) + ∆

dσ

dΩ
(vj → v′j′)

(9)
where

∆
dσ

dΩ
(vj′ → v′j′) =

1
4kvj

∞∑

λ=0

[Aλ(vj′ → v′j′)

− AFBA
λ (vj′ → v′j′)]Pλ(cos θ). (10)
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Fig. 2. Computed angular distribu-
tions for the cis (left panel) and trans
(right panel) conformers as a function
of the collision energy.

This formula is written [19] in its generalized form for
rovibrational excitations but obviously can also be ap-
plied to elastic processes. The first term in equation (9)
is the first Born approximation (FBA) for the differential
cross-section for which simple closed-form expressions are
available [15]. On the other hand, the second term repre-
sents its partial wave expression which also includes the
formulation of the T -matrix elements in the FBA form, al-
ready available in the literature [15]. The sum over λ con-
verges much more rapidly and terminates at λmax while
the contributions to any Aλ for l(l′) ≥ lFBA + λ cancel
each other identically. Therefore, the elements of T from
exact calculations are now required for a limited range of
values only. In a sense, one can say that a separation of
the angular ranges contributing to the cross-sections has
now been achieved. For equation (9) to be an equality it is
further necessary that the first term of this equation and
the second one from equation (10) be identical. However,
to obtain a difference (Aλ −AFBA

λ ) that becomes zero for
high λ one must use the T -matrix elements from the fixed
dipole scatterer. Thus, we would eliminate the problem of
oscillations for angles different from 0◦, because both Aλ

and AFBA
λ represent oscillating quantities when increasing

the dimensions of the T matrix, as previously explained:
i.e. the high λ’s contain high l’s T -matrix elements which
feel mainly the dipole potential, hence they must be equal
to those elements from the fixed dipole scatterer which
cannot be expanded into Legendre polynomials.

3 Computing the differential cross-sections

The target wave function and geometry were those already
described in our earlier calculations of reference [9]. The
partial wave expansion was tested in the trans geometry of
HCOOH. The range of the low l values was extended from
15 to 20 using exact static-exchange-polarization (SEP)
calculations and was further extended to l = 40 using
a model, semiclassical exchange already described in our
earlier work (SMEP) [13]. The FBA values were then
used in equations (9) and (10) to provide a further test
of the convergence. An example of this analysis is shown
by Figure 1, where two different energy values are exam-
ined (1.0 eV and 50.0 eV) and the different expansions

Fig. 3. Computed elastic (rotationally summed) angular dis-
tributions for electron scattering off FAD molecules at different
collision energies.

are compared: one clearly sees that only small differences
exist for the lower-l expansions, while the final results are
fully converged at all angles.

A comparison of the behavior of the cis and trans-
configurations for the formic acid (FA) is shown over a
broad range of energies by the two panels reported in
Figure 2. We show there the full exchange calculations
(lmax = 30) for different collision energies from 1.0 eV up
to 50 eV. One clearly sees the very marked similarities (as
expected) of the two systems, with the trans configura-
tion showing deeper DCS minima around θ ∼ 90◦ than
the cis configuration. Both sets of data, however, present
strong forward scattering features and a very marked in-
crease of cross-section “dips” around 90◦ as the collision
energy increases. The dominance of the dipole scattering
is, however, evident from all calculations.

A rather different behavior of the scattered electron
distributions is shown, however, by the case of the formic
acid dimer (FAD), which we had studied earlier in terms of
resonant structures [17] and for which we have now com-
puted the DCS using the same target structure of [17] and
carrying out the same convergence study already outlined
for the FA target before.
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Fig. 4. Computed angular distribu-
tions, at 20 eV (left panel) and 40 eV
(right panel) for the two conformers
of the FA molecule and for the FAD
molecular target.

The results reported by Figure 3, over the same range
of energies already examined for the FA molecule, show
a different behavior than before. We see, in fact, that
the low-energy DCS present no marked intensity dips
around 90◦, while a modest intensity reduction begins to
appear from about 20 eV and above. The different target
symmetry and the presence of a stronger selection rule
for the contributing angular momenta [17] indicate that
the interference effects are weaker in the dimer case with
respect to the monomer, where the lower symmetry (A′)
allows for stronger interference effects in the computed
DCSs.

That this is indeed the possible explanation could be
gleaned from a comparison carried out at two different col-
lision energies and reported by the two panels of Figure 4.
We show there the FA angular distributions for the two
conformers and also the one for the FAD complex: at both
energies one sees that the trans configuration shows the
strongest intensity decreases as θ increases, while the FAD
target presents at both energies very marked backward
scattering features and rather modest intensity reduction
as θ approaches π/2.

In conclusion, our calculations indicate that angular
distribution should be able to show differences between
the two FA conformers and also suggest that the presence
of FAD molecules would show up in the DCS behavior.

In the following section we therefore compare our re-
sults with the experiments to find out both how well we
are reproducing them and whether or not the measure-
ments bear us out in showing possible differences between
the behavior of the different conformers.

4 Comparing experiments and calculations

We have decided to compare both our calculations for the
two conformers of FA with the experimental findings in
order to see if one could detect differences in the experi-
ments which would indicate the dominant species.

The four panels of Figure 5 therefore report the exper-
imental data at four different energies [11] and the results
of our calculations for both the cis and trans conformers.
One clearly sees there that all our computed data follow

quite closely the experiments, especially in the forward di-
rection, and agree with them in showing the presence of an
intensity “dip” around 90◦. In fact, the calculations show
that feature to be more marked for the trans isomer than
for the cis isomer, while the experiments, from 5 eV up to
15 eV, indicate a less marked minimum and appear to be
better described by the cis configuration calculations.

The comparison at higher collision energies is shown by
Figure 6, where we report in its four panels the data at four
different energies, from 20 to 50 eV. The data at higher
energies show the experiments [11] to have a stronger in-
crease in the backward direction than that surmised by our
calculations. The computed data for the cis conformer are
again following measurements more closely in the inter-
mediate angular region. In any event, these higher energy
data indicate a much stronger backward scattering com-
ponent than that provided by our calculations. However,
considering the importance of correlation effects in this
region of interaction, we think that our model treatment
of correlation-polarization forces in the intermediate and
short-range of distance is probably the main cause for the
observed discrepancies as the collision energy increases.

5 Present conclusions

We have carried out calculations for the angular distribu-
tions of scattered electrons off the gas-phase FA molecule
over a broad range of collision energies and correspond-
ing to the elastic (rotationally summed) channels at the
considered energies.

The calculations turn out to be in reasonable agree-
ment with experiments [11], producing the strong forward
peaking observed at all energies, as expected for a polar
molecular target, and reproducing the marked dip in dis-
tribution intensities near θ = π/2. The experiments in the
higher energy range (E > 15 eV) [11] also show a marked
increase of intensity in the backward direction, a feature
which is only in part described by our calculations. The
latter, however, do confirm the presence of sizeable DCS
values as θ increases towards π.

Our calculations are able to compare the angular dis-
tributions produced by the two possible cis and trans
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Fig. 5. Computed and measured [11]
angular distributions for the elastic
DCS (rotationally summed). The calcu-
lations refer to the trans isomer (solid
line) and to the cis isomer (dashed line).

Fig. 6. Computed and measured (from
Ref. [11]) elastic differential cross-
sections (rotationally summed) for the
cis (dashed) and trans (solid lines) con-
formers of the FA molecule.
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configurations of the FA molecule in the gas phase. Our
calculations for the isolated molecule [9] indicate the trans
structure to be more stable by about 0.169 eV, although
no zero point energy correction was applied to estimate
that value. The corresponding scattering results show
that, over the whole range of considered energies, the
cis target produces a less marked intensity dip around
θ = π/2 in comparison with the trans configuration. The
corresponding experiments do seem to be more closely
reproduced by the cis data although we think that the
present calculations are not accurate enough to be able
to really distinguish between the two contributions on the
basis of the overall agreement with experiments.

Another test calculation that we were able to carry out
involved the behavior of the DCS, over the same range of
collision energies, for the gas-phase dimer complex, the
FAD molecule which we had already studied, experimen-
tally and theoretically, in our previous work [17] in terms
of resonant features.

The present numerical analysis clearly shows that one
should expect a different angular behavior for the FAD
target species: the forward scattering peak is certainly
present also in this case, but the marked decrease around
θ ∼ π/2 is much less visible and does not come up in the
distributions at the lower-end (1 eV to 5 eV) of the exam-
ined energy scale. In other words, the calculations suggest
that the experiments which were to be able to identify
unequivocally scattering from FAD species, should also
produce data which differ considerably from the corre-
sponding monomer distributions and should therefore be
amenable to experimental detection.
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